
This  article presents the rudiments of constellation design to familiarize the reader with 
some of this field’s methods, issues, and concerns.  Two exotic constellations  are  under 
consideration for various missions. 

tational  harmonics, produce an array of constel- 
lations  with  specific  properties to support Various 
mission  constraints.  A key point is that constella- 
tion design  is not the mere  repetition of a satellite 
orbit as a template. 

The aggregate of satellites  and orbits presents 
a totally new  systems problem with a combina- 
torial growth in complexity for the most ele- 
mentary analysis questions. The fundamental 
performance metric is constellation geometric- 
coverage  statistics. Ergodic theory, the multires- 
olution visual  calculus, and dynamical  systems 
theory are  some  new  approaches to constellation 
design problems. New infrastructures and new 
paradigms  will further develop this technology. 

The importance of communications satellite 
constellations cannot be  overstated. In one fell 
swoop,  such a constellation  can  provide  an  under- 
developed  region  without a modern  communica- 
tion  infrastructure  with  an instant modem com- 
munications  network. The social  and  economic 
implications of this technology  are  enormous. 
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The traveling-salesman  problem 
The need for satellite  constellations is a natural 
outgrowth of the need for global communica- 
tions and  intelligence gathering. A  single  satel- 
lite  can  only  observe a spherical  cap  region of the 
Earth (as illustrated in Figure l), called the in- 
stantaneous nadir-pointing coverage  circle  (also 
referred to as a footprint) of the satellite. The 
coverage  circle’s  area, A,  is a function of altitude, 
h, and the Earth’s  radius, R (6,378.14 km), 

A(h) = 2a2 (1 - COS 0)  = 2 d 2  h/(R + h), (1) 

which is  always smaller than the hemisphere’s 
area, 2 d 2 .  Hence, we can get a quick  estimate 
of the lower  bound for the number, N, of satel- 
lites with altitude, h, required to provide instan- 
taneous global  coverage by dividing the Earth’s 
surface  byA(h): 

N > 4 d 2  / A(h) = 2 + 2Wh. (2) 

Although Equation 2 is not a tight estimate, it 
tells us right away that we must always  have 
more than two satellites to provide simultane- 
ous global  coverage. Thus satellite  constellations 
are essential to provide  any  kind of global  satel- 
lite service. 

At first  glance, it might  seem that constellation 
design  is  merely the act of replicating multiple 
copies  of a single  satellite in slightly  different  or- 
bits.  Although the end  result  might  seem to sup- 
port that idea,  the  design  process  is  actually  very 
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Satellite I 

Figure 1 .  The  nadir-pointing coverage circle of a 
satellite on Earth. 

difficult. It is a much  more  organic  process  some- 
what  akin to the buildmg of a multicellular  organ- 
ism. In its  most  basic  form,  each  of the cells  is an 
identical  satellite. For more complex  missions, 
satellites  with  different  capabilities,  such  as  differ- 
entiated  cellular groupings, might  be  neceswy.  But 
even  in the simplest case  of identical  satellites  in 
similar  orbits, the  constellation  performance analy- 
sis can be  extraordinarily  complex  due to the com- 
binatorial  effects of multiple  satellites Mung with 
multiple  locations on the ground. 

Even  before the current interest in constella- 
tions, ground-station  planners faced the difficult 
problem of scheduling  communications  passes for 
multiple  satellites. One way to see  why this is such 
a hard  problem  is to compare it to the well-known 
traveling-salesman  problem:  Given a list of cities, 
what is the optimal path for a salesman to visit 
each  city once? Now suppose the salesman is a 
satellite and the  path traversed  is a fixed orbit. 
What orbit, if it is  even  possible,  provides the op- 
timum  path to visit the list of cities? Now  increase 
the number of  satellites,  each  in a different  orbit. 
What combination of orbits provides the opti- 
mum  coverage of  all ground  stations? The once- 
simple graph-theory problem has not only in- 
creased in size  and  combinatorial  complexity,  but 
the paths must now  satisfy the constraint of a set 
of differential equations for artificial satellites. 
Fortunately for  most  applications,  designers typ- 
ically  use  certain  well-understood  satellite orbits 
for  constellation  design. 

Figure 2. Elliptical orbit in the  orbit plane. 
~ ~~ ~ 

Basic orbital  mechanics 
To intelligently  discuss  constellation  design,  let’s 
cover some basic orbital mechanics to describe 
the geomeuy and  provide  metrics to measure  per- 
formance. I will touch  upon  only  circular  and  el- 
liptical  orbits, as  depicted in Figure 2. The semi- 
major axis, a, is  half the distance of the axis 
through the ellipse’s longest  part. The semiminor 
axis, b, is  half the distance of the axis through the 
ellipse’s shortest part. The eccentricity, e = cia, 
measures the ellipse’s  shape. For a circular  orbit, 
the  eccenmcity is 0 because  in this case, the axes a 
and b are  equal,  and c degenerates to 0. In the lim- 
iting case  when a approaches  infinity  with a finite 
b, c also  approaches  infinity,  and  we  obtain a par- 
abolic orbit with  eccenmcity  equal to 1. Thus, for 
elliptical orbits, the eccentricity always  falls  be- 
tween 0 and l .  The satellite’s  location on  the el- 
liptical orbit is  given  by  angle uin Figure 2 (called 
the true anomaly). The closest  approach to Earth 
is  called  perigee, the farthest is  called  apogee. 

From Keplerian orbit theory, without pertur- 
bations,  elliptical  orbits  are always confined to a 
plane  centered on Earth known  as the  orbit  plane. 
To  provide  space  with  coordinates, a fundamental 
plane  must  be  chosen to represent the q plane. 

For  Earth satellites, this plane is  usually the 
equator’s  plane  with the x-axis pointed in the di- 
rection of the constellation  Aries,  also  known as 
the vernal equinox direction. Our  orbit plane 
might be inclined with respect to  the equator, 
and the angle  between  these  two  planes is simply 
called the inclination, usually denoted by i .  The 
orbit plane intersects the equatorial plane in a 
line known as the line of  nodes. The line of nodes 
intersects the orbit in  the equatorial  plane in two 
points. The point where the satellite moves into 
the +Z hemisphere is called the ascending  node; 
the  other node is  called the descending node. Q 
generally denotes the angle between the x-axis 
and the ascending  nodes.  Finally, the last  para- 
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Figure 3. The orbital inclination, ascending node, 
and the argument of perigee. 

~~ 

meter required to specify the orbit is the angle 
o, called the argtcment ofpengee, between the as- 
cending node and the perigee. These angles are 
indicated on  the inclined orbit in Figure 3. The 
six parameters, a, e, i, Q, m, and M a l l e d  the 
classical orbital elements-completely charac- 
terize a conic orbit. 

Perturbations 
For  Earth-orbit design, we must consider 

three major  perturbations:  atmospheric  drag, the 
gravitation  of the sun and  moon,  and the Earth’s 
equatorial bulge. For typical  constellations, av- 
erage orbit altitude is generally assumed to be 
high enough to avoid the atmospheric drag that 
would  cause the orbit to decay  if unmaintained. 
Similarly, the altitude is  assumed to be no higher 
than  that of geosynchronous orbits (35,863 km) 
so that luni-solar perturbations are  small  enough 
and might be ignored during the design stage. 
In actual  satellite  operation,  these  forces  must be 
modeled  and included in  the orbit calculations 
to  the degree of accuracy that  the mission re- 
quires.  But during typical constellation design, 
the main  effect that must  be  included  is the so- 
called32 term, named after the coefficient of a 
planet’s geopotential harmonic expansion. 

The32 term corresponds to the planet’s  equa- 
torial bulge  and  has three important effects on 
the orbit. The equatorial  bulge  might  be thought 
of  as  an additional tire of  mass around a spherical 
planet’s  equator. This extra  mass  tends to pull the 
satellite down towards the equatorial plane 

sooner  than expected. This tends to make the 
satellite  reach its ascending node sooner than it 
would  without the perturbation. Hence the node 
appears to move  backward  (see Equation 3) and 
the effect  is  called nodal regression. In other 
words, the orbital plane is precessing due to J2 
perturbation. For a space shuttle to orbit a t  200 
km altitude and 28.5 degrees (deg) inclination, 
the nodal regression is roughly -7 deg per day, 
which  is quite significant. 

dWdt = -2.06474 x l O I 4  cos(t) 
(1 - e2)-2 deglday. (3 1 

A second  effect  due to32 perturbation is  called 
the precession of the  argument of perigee. 32 
causes the perigee to rotate around the orbit’s 
normal  vector,  which  is  also the orbit plane’s nor- 
mal  vector  (see  Equation 4). The orbital period is 
shortened because as the orbit moves from node 
to node, it reaches the nodal  crossings  faster due 
to the equatorial bulge’s gravitational  forces: 

d d d t  = 1.03237 X 1014 (4- 5 sin2(t]) 
(1 - e2)-2 deg/day. (4) 

. . . , .  . Qrblial &&o;gy:: ;:: .. .: 
. .  

Now that we have the basic tools for  orbital 
mechanics,  let’s  examine some of the space in- 
dustry’s  most  useful  orbits. 

Cirnrlm orbit. Circular  orbits  are the most use- 
ful because  of their  symmetry  and ease of  analysis. 
They move  with  uniform  speed,  and we can  fre- 
quently estimate their coverage geometry with 
good, closed-form  approximations.  However, 
note  that  the rate at which  circular orbits cover 
ground is not uniform. In other words, a circular 
orbit’s  projected  velocity on the F u n d  is not uni- 
form due to the Earth’s rotation. All points on 
Earth rotate at  the same  angular  velocity  around 
the North Pole.  However, the actual  velocity a t  
the equator is faster than that at  a higher  latitude. 
This is  because  latitude  circles  have  different  radii, 
but the same  angular  rate.  Because  velocity is an- 
gular rate times  radius, the points at different  lat- 
itude circles  have  different  velocities. 

Three distinct  cirmlar-orbit  classes  have  emerged 
in  orbital  nomenclature:  the  geosynchronous Earth 
orbit  (GEO),  the  low Earth orbit (LEO)  for  orbital 
altitudes in the 100 to 1,000 km range,  and the 
medium Earth orbit (MEO) for  altitudes  between 
GEO and LEO. The cut-off  point  between LEO 
and ME0 is not, of come, well-defined. A related 
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acronym  for  highly  elliptical  orbit  (HEO)  refers to 
orbits  with  high  eccentricity. A final  acronym of 
some  use is the geosynchronous  transfer orbit 
(GTO), which has a perigee  altitude (usually  200 
km) typical  of a LEO, and the apogee  altitude of a 
GEO. It is  an  intermediate  orbit  used to transfer a 
satellite  from LEO into GEO through the well- 
known Hohmann transfer  depicted  in  Figure 4. 

Geosyncbronous orbit. Geosynchronous or- 
bits  are perhaps the best known of  all orbits due 
to their extreme  usefulness for the communica- 
tions satellite industry. The idea is as simple as 
it is elegant: find a circular orbit around the 
equator that moves at  the same  angular rate as 
the Earth’s rotation. A satellite  in this orbit has a 
period of 24  hours and would hover over the 
same point on  the equator. Equation 5 provides 
the relations for orbital period: 

Period = 27rSqrt(a3/p) (5) 

From this, we can compute a geosynchronous 
orbit’s  radius to be 42,241 km. p is the Earth‘s 
gravitational  parameter,  398,601.2  km3/sec2. 

Elliptical orbit. Elliptical  orbits  are  much  more 
difficult to analyze  because the orbital velocity  is 
not uniform. The satellite  moves the fastest near 
perigee  and the slowest near apogee. This is  eas- 
ily  observed from Equation 6 (an orbit’s energy 
and the fact that energy is  conserved): 

Energy = d/2 - p /r, (6) 

where r and v are the orbit’s instantaneous ra- 
dius and velocity. When  the orbital velocity’s 
nonuniformity is combined with  nodal and 
perigee  precessions  and the Earth’s rotation, the 
coverage  analysis becomes extremely difficult. 
However, the motion’s nonuniformity implies 
that  the satellite will linger over some regions 
and rush through others. If the72 effects  can be 
controlled, the coverage’s nonuniformity can  be 
exploited to great advantage. The next  class  of 
orbits provides the control. 

What makes the elliptical orbit particularly 
difficult to handle undery2 perturbation is the 
perigee’s rotation.  From  Equation  4, we note 
that when the inclination is S 3 . 4  deg, the 
perigee is fixed. This special inclination is  called 
critical inclination. Critically inclined  elliptical 
orbits are very  useful. The most famous  of  these 
is the Molniya orbit, which  is a highly  elliptical 
12-hour-period orbit  the Soviets  originally  de- 
signed to observe the  northern hemisphere. A 
typical design sets the perigee a t  200-km alti- 

Figure 4. The CTO-Hohmann transfer of a satel- 
lite from a  circular LEO to the high-altitude CEO. 

tude, with an argument of perigee a t  -90 deg 
(over the south pole). Critical inclination is  se- 
lected to fix the perigee over the south pole and 
maintain the observation geometry over the 
northern hemisphere, where this orbit spends 
most of its time. Figure 5 plots the Molniya or- 
bit’s groundtrack. Note how the apogee  is  over 
both the continental US and  Russia. This per- 
mits the satellite to gather data  over the US and 
transmit it while  over  Russia. 

Periodic groundtrack d i t .  The geosynchro- 
nous orbit and the Molniya orbit  both have  pe- 
riodic  groundtracks. For the  geosynchronous  or- 
bit, the groundtrack is  just a point. The Molniya 
orbit has a U-shaped one. For planetary obser- 
vations,  scientists often must  take  data  over the 
same ground locations  repetitively under vary- 
ing conditions. It is  possible to balance nodal re- 
gression with the Earth’s rotation rate to ensure 
the groundtrack repeats after several orbits. 

Sun-synchronous orbit. To maintain the same 
lighting conditions for observing a planet, it 
might  be  necessary to maintain a constant  geom- 
etry between the sun and the satellite. We can 
achieve this by adjusting the nodal regression 
rate that precesses the orbital  plane to match the 
sun’s one deg/day motion. Such an orbit will  al- 
ways visit the same latitude at roughly the same 
time of day, thereby providing a near-constant 
lighting condition to observe the same  location. 
Figure 6a shows this geometry. In Figure 6b, we 
see the  orbit from the sun’s point of  view, which 
shows that the Earth never  occults this orbit. 

This might be  very  useful  if, for example, the 
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Figure 5. Molniya orbit’s groundtrack. 

mission  requires a lot of power and the  solar  pan- 
els  must  always point a t  the sun. This geomeuy 
is  maintained throughout the year. Perturbations 
due to the Earth’s orbit ellipticity  will  cause the 
geometry to shift  slightly if it is not compensated 
by  maneuvers. This is generally acceptable for 
most  missions.  Besides  providing  constant  power, 
the solar  geometry‘s constancy also  implies a more 
stable  thermal  environment that helps  with  hard- 
ware  design  and  mission  operations. 

Sun-synchronous  orbits  tend to be near-polar  or- 
bits  with  inclination greater than 90 deg.  From 
Equation3,weseethatforthenodaldrifttobepos- 
itive, the inclination  must be greater than 90 deg. 
For typical Earth satellites  using this orbit,  the alti- 
tude is  generally  around 1,000 km, which  yields a 
near-polar orbit with  inclinations  around 100 deg. 

There are  sun-synchronous orbits whose  peri- 
gees are fixed  due to judicious  selections of the 
orbital eccentricity and  balancing the effects of 
the 32 and j’3 harmonics. These are known as 
frozen  orbits.  Frozen orbits for Earth further re- 
quire o = 90 deg and  for  Mars, o = -90 deg. 

Euipso-type orbit. Until recently,  constellation 
design  has  been restricted mostly to military or 
scientific  applications.  Civilian  telecommunica- 
tions have  very different requirements and  de- 
sign  drivers. In particular, for business  applica- 
tions, peak  usage tends to occur  between 9 am 
and 5 pm (the day  side).  Designers  decided that 
an ideal situation would  have the communica- 
tions satellites bunch  up over the day  side  and 
move  quickly through  the  night side. This is 
achieved  with a critically  inclined,  highly  ellipti- 
cal, sun-synchronous orbit with apogee  placed 
near the desired  location on Earth (such as New 
York City). The sun synchronicity ensures the 
satellite will  always  visit New York at  about the 
same time of day. The high eccentricity  enables 

the satellite to linger  over New York on the day 
side  as long as possible  and  spend  minimum  time 
on Earth‘s night side. The critical inclination 
guarantees that the perigee  and the apogee’s lo- 
cation are both fixed.’ 

Basic constellation types 
Now that I have  gone through the orbital  zoo, let’s 
put these  cells together  and  design a multicellular 
organism: the constellation.  Recall that the chief 
reason  why  constellations  are  needed  is that one 
satellite  can  cover  only a limited portion of the 
Earth at  any  particular instant. For  global  cover- 
age,  whether  for  observation or communications, a 
constellation  is  the only solution.  Fortunately, this 
solution  fits in well with the current technological 
trend to decentralize control and distribute the 
process  across a network The key  differences  are 
that the constellation  is a wireless  network  whose 
nodes  are not fixed and that operates in a less  ac- 
cessible  and more  challenging  environment. 

One of the key  drivers for current constellation 
design is the need for global  wireless telephony 
services.  Geosynchronous  networks  have  been in 
service  for  some  time, but these behemoth satel- 
lites are extremely  costly to build, launch, and 
maintain. The current drive  for  smaller,  cheaper 
satellites  and  lower  cost  has  driven the network 
from a geosynchronous altitude of  over 3 5,000 
km down to around 1,000 km for  mobile  satellite 
constellations. This drop in altitude represents 
many cost differences: satellites are cheaper to 
launch into orbit, the telecom  and  power re- 
quirements might be reduced, and the overall 
satellite hardware is cheaper to build. But the 
downside  is that now  instead of three to 10 geo- 
synchronous satellites, close to 1,000 satellites 
might  be  required to provide  global  coverage. 

In principle, constellation zoology is much 
more complex  because arbitrary combinations 
of orbits might be  considered in building a con- 
stellation. But in practice, due to the enormous 
difficulty  in  analyzing  constellation  performance, 
a few  have  evolved  and emerged as useful  design 
concepts. I reiterate here the enormous differ- 
ence  and  technical  challenge a network presents 
to the analyst  as  opposed to the task  of  analyz- 
ing a single network node. The combinatorial 
complexity  exhibited in the factorial growth of 
the number of branches  in the analysis tree is a 
major factor for the increase in difficulty. 

Another high-level  driver in constellation de- 
sign is the system’s communications  design. Al- 
though this is an obvious fact, its impact on the 
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(a) 

Figure 6. (a) 6 am  view  of sun-synchronous  orbit  from above  the North Pole, and (b) 6 am  view  of sun-synchronous  orbit 
from the sun’s view. 

constellation design is crucial and cannot be 
overemphasized. For example, whether the con- 
stellation’s satellites have intersatellite commu- 
nications links can make a big difference in the 
number of satellites the constellation requires. 
This,  in turn, has a large impact on total system 
cost. Unfortunately, system trades of this type 
cannot be fully  addressed in this limited article. 

Constellations  with circcu1a.r orbits 
Circular  orbits  are  well-understood  and  provide 

the most  uniform and stable  design component 
for a constellation. In the case where 24-hour uni- 
form global  coverage is desired, a constellation 
with  circular  orbits  provides an optimal  solution. 

Geosyncbronous constellations. From Equa- 
tion l, we can estimate a geosynchronous  satel- 
lite’s  coverage  circle to have an 81-deg  half-cone 
angle. This implies that with three geosynchro- 
nous satellites, we can cover between 81- and 
-81-deg latitude of the entire world geometri- 
cally. The NASA TDRSS system  used this de- 
sign to provide a global communications net- 
work for NASA missions. From  the spacecraft 
and ground communications systems design, 
more spacecraft might be required to provide 
service  with higher quality or greater through- 
put capacity. In general, such a system  would  re- 
quire a t  most tens of  satellites as opposed to the 
thousand-satellite  system  using LEOS or MEOs. 

Walker  constellation. Suppose you  wished to 

design a communications  network on the ground. 
A first attempt might  be to uniformly  divide the 
region  with a Cartesian  grid  and  place a commu- 
nications node a t  each  of the grid  points. On the 
sphere,  aside iiom the regular  solid  polygons  well- 
known to the Greeks, there is no simple  way to di- 
vide the sphere into regular  Cartesian grids. Even 
if this were  possible, there is no means at present 
to maintain a network of satellites at fixed  nodes. 
Mathematically, this is the challenging  geometric 
combinatorial  problem of tiling on the sphere. 

The next  best thing is to preserve  as  much sym- 
metry as  possible  by  using the same  template  cir- 
cular orbit repeatedly in a regular and  sensible 
fashion. Three parameters  describe the Walker 
constellation:* T/P/F. Tis  the total number of 
satellites, P is the number of orbit planes,  and F is 
the phasing  parameter. The Tsatellites  are  equally 
divided  among P planes  with  the  same  inclination. 
The planes  are  evenly  spaced by 360/P deg. The 
phase-angle offiet is  given by 360 F/T deg to en- 
sure a more optimal  packing of Earth’,, coverage 
circles. For example,  Motorola’s  Iridium  constel- 
lation  design  is  based on the Walker  constellation. 

Stn?m-of-mverage nmStell/ttion. Streets of  cov- 
erage  approaches  the  problem  slightly  differently 
from the Walker alg~rithm.~,~  The basic  idea  is to 
design  the  coverage  for a single  plane  of orbits first, 
then extend it  to the entire globe  by  duplicating 
the satellite  plane  repeatedly. Start with  an orbit 
plane  and  populate it with  Ksatellites  evenly  spaced 
with  overlapping  coverage  circles as  shown in Fig- 

J A N U A R Y ~ E B R U A R Y  1999 63 



ure 7 .  This ensures  the K satellites  around the or- 
bital  plane  cover  an  entire  band. This band  is  called 

a street of coverage. The K- 
satellite  plane  is  duplicated  mul- 
tiple  times until various  streets 
of  coverage  cover the equatorial 
region. This guarantees  an  an- 
nular  region  between  two  lati- 
tudes  (determined by the incli- 
nation and  altitude)  is 
completely  covered. 

rt"cI 

Street of 
coverage When nonuniform coverage 

Figure 7. Street of coverage. is required,  elliptical orbits are 
much more efficient. The 
Molniya orbit is a good  exam- 

ple  because it is  designed to spend  most of its 12- 
hour period over the  northern hemisphere. In 
fact, it was designed to gather information over 
the US for 12 hours and then relay the data  over 
the Soviet Union during the next 12-hour orbit. 
Thus if one requires 24-hour data gathering, a t  
least  two satellites are needed. For redundancy 
and smoother transitions between  satellites  tak- 
ing data, a three-or-more satellite constellation 
in Molniya orbit is desirable. They can be de- 
signed to have the same  groundtrack but observe 
the same  locations at  different times  of day. 

With a colleague, I designed the Nuonce con- 
stellation  (Nonuniform Optimal Network Com- 
munications Engine, using elliptical LEOS) 
specifically to target the western  hemisphere  dur- 
ing business  hours.' The constellation  used crit- 
ically  inclined,  sun-synchronous,  elliptical  orbits 
with the apogee  over the northern hemisphere. 
Recall that sun-synchronous orbits always  cross 
the same latitudes during the same time of  day. 
The Nuonce  constellation  concentrated the orbit 
planes that cross New York City between 9 am 
and 11 am,  and 1 pm to 5 pm. This concentrates 
the coverage during the busiest  times  over  busi- 
ness hours where peak support is needed. This 
independently developed constellation concept 
resembles  Draim's  copyrighted  Ellipso orbit. 

Elliptical orbits are  generally  more  difficult to 
handle. In addition to the problem  with the ar- 
gument of  perigee  precession, the perigee pas- 
sage  itself  is  problematical  due to drag  effects that 
cause the orbit to decay or lose its desirable  char- 
acteristics. Of course,  these can be corrected  with 
maneuvers.  But  when  you  have a 1,000-satellite 
constellation, operational simplicity  becomes a 
critical  cost issue-any means to avoid  maneu- 

vers  should  be  carefully  considered.  Raising the 
perigee  while  keeping the semimajor axis (hence 
period) constant solves the decay problem but 
greatly  lessens the elliptical orbit coverage strat- 
egy's  effectiveness.  Consequently,  most  design- 
ers tend to shy away from elliptical  orbits,  espe- 
cially for LEO constellations where the drag 
problem  can  be  very  serious  indeed. 

Constellation performance  metric 
The two most critical satellite functions are 

observation and communication. In both  in- 
stances, the service-frequency  availability is the 
crucial metric for performance. Of course, the 
word available is  loaded in that it depends  highly 
on the  nature of the service required and the 
hardware  involved. An infrared detector is  avail- 
able to observe a patch of dark sky only when it 
is pointed away from the sun, Earth, or moon, 
but a camera photographing the  Earth must 
view it in sunlight. The most primitive memc is 
geometric coverage:  how often is the region in 
the spacecraft's line of sight and  available for ob- 
servation  by some instrument? Even this simpli- 
fied metric is not trivial for a single satellite. 

does a satellite see a ground station? A view  pe- 
riod is the amount of time a satellite is  visible to 
a ground station during a flyover. Of course, in- 
tegrating the  orbit and  accumulating the times 
when the satellite sees the ground station easily 
simulates this. When there are  multiple  satellites 
and ground stations, once again the combina- 
tions overwhelm the situation even  with  simple 
propagators. 

Instead of attaching the view  circle to a satel- 
lite  groundtrack's  nadir point, one can  attach the 
view  circle to the ground station. Visibility  be- 
tween satellite and ground  station is  achieved 
only if the satellite  nadir  crosses into the station- 
view  circle  as in Figure 7 .  This picture brings to 
mind the Poincare Recurrent Theorem, which 
states that given a point x wandering  ergodically 
in a box  of volume 1, the probability of finding x 
in regionA in the box  is equal to A's volume. Put 
another way, the percent of  time x spends in A 
equals Volume@) x 100. If this holds for the 
satellite view-period problem, then the station- 
view-circle's  area  divided  by the area the satel- 
lite groundtrack band  (Figure 8) covers should 
provide coverage probability, hence the long- 
term average  of the coverage  view period. Un- 
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fortunately, the satellite  groundtrack‘s motion on 
Earth is not ergodic-the  Recurrence Theorem 
does not apply. 

However, the reason it fails  is due to the fact 
that satellite  groundtracks do not mme uniformly 
across Earth. They tend to bunch up near the 
poles. What if  you  could  spread them  apart as you 
go up in latitude  closer to the pole?  Indeed,  using 
a weight  function to compute  the  area  can  do this. 
Mathematically, this is finding a measure  (weight 
function) that is invariant  under the groundtrack‘s 
flow. In other words,  an  area  weighted  with the 
measure  remains constant under the flow  of the 
groundtrack I found  such a measure for circular 
orbits and derived  an integral that provides the 
probability  for a satellite to be in a given  ground 
station’s view.’ This integral replaces the differ- 
ential-equation  dynamics  required to generate the 
station-view  periods  needed to compute  conven- 
tional  algorithm  probability. 

When using this approach, it becomes  practi- 
cal to ask  global  questions  such as,  given  all  satel- 
lites in a circular orbit with a 1,000-km altitude, 
what  are the best  locations to place a ground  sta- 
tion for maximum contact  time  between the satel- 
lite  and the station? From this theory, we see that 
stations at latitudes  near the poles  tend to provide 
the most contact time (because the satellite 
groundtracks tend to bunch up near the poles). 
Figure 8 shows the view  circles of two stations, 
one near the equator and one near the satellite 
footprint band’s upper  edge. The surprising fdct is 
that both stations have the same probability of 
seeing the satellite even though the view-circle 
intersections  with the band  appear  different  un- 
der the standard  sphere  measure. 

a geometric approach to coverage computation 
might be useful.  Typically,  coverage  analysis  is 
produced by first discretizing the sphere into a 
set of polygons. The propagated groundtrack is 
checked against the polygons to determine 
whether it is  inside or outside,  and  statistics  are 
accumulated to generate  coverage  history.  Sphere 
discretization  is not a trivial m a t t e r a  uniform 
finite partition is hard to come  by  because there 
are only five known  classical  solids.  Aside from 
the problem of  how to uniformly partition the 
sphere, the task of keeping  track  of the statistics 
can quickly  become a computational nightmare. 

An answer to this problem is  visual  calculus 
(based on the fact that an infinitesimal  polygon 
provides a uniform  discretization  of the sphere). 

Figure 8. Two stations  with  the  same  amount of 
view  periods. 

Suppose we use an equal-area project (such as 
the Peter’s projection of the sphere) onto a rec- 
tangular grid. Now every point in the rectangle 
has the same infinitesimal area. On the com- 
puter, we might consider a pixel  as  an  infinitesi- 
mal. Thus, if  we generate a plot showing where 
the satellite groundtrack passed through the sta- 
tion-view  circle,  just  by computing the number 
of  pixels in the view  circle under an equal  area 
projection allows  us to compute the coverage 
quickly. Furthermore, the map projections han- 
dle the data-organization problem. Once we 
compute maps  with  coverage information, they 
can be operated upon algebraically to produce 
further statistical products. 

One limitation to this approach  is that an  esti- 
mate’s  accuracy  depends on the map’s resolution. 
To overcome this drawback, a multiresolution 
map  function  replaces the pixel-based  map. This 
also  separates the computation completely from 
the visualization. Nevertheless, due to its con- 
ception, we still call this method multiresolution 
vimal calculus, which is currently  under  patent 
review at JPL. 

Global coverage enatysls 
The reason for ergodic method develoDment 

and  visual  calculus to facilitate  global-cover- 
age-information computation. In  the case  of er- 
godic theory application, it enables a quick, 
global  calculation  of the station-view-period  per- 
formance so that a planner can  easily  decide the 
best location to place a ground station based on 
knowledge of the satellites it is  supposed to ser- 
vice. Prior  to  the ergodic method, such a com- 
putation  would  have  been  nearly  prohibitive  due 
to the large amounts of computation required. 
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Figure 9. Revisit-time map of a double  constellation  with radar instruments. 

Similarly, the visual  calculus  is  designed to pro- 
vide  global  statistics  of  visibility,  revisit,  and other 
coverage data. In Figure 9, I provide a revisit- 
time map computed using visual  calculus for a 
complex  mission. In this instance, two constella- 
tions each  carry  different instruments. The two 
constellations are at  different altitudes to opti- 
mize their respective instrument performance. 
The coverage  analysis requires modeling instru- 
ment performance, which  is  highly  sensitive to 
geometry.  Visual  calculus  provides a language 
h d  algorithm to compute  coverage  statistics to 
answer the revisit  question:  how long do I have 
to wait until the next satellite can  see me? In this 
instance, the green area  provides a revisit  time of 
less than 30 minutes, the yellow  area  provides a 
rwisit time of  less than one hour,  and the orange 
area  provides a revisit time  greater than one hour. 
The instruments do  not view the black region at 
all. Note  the resulting map’s complex  geometry. 

Exotic constellations 
Two  exotic constellation  concepts  are under con- 
sideration for various missions. The first con- 
cept is formation flying. The idea is to  put a 
group of satellites  in  orbit  around  Earth and 
force them to fly in a geometric pattern such as a 
triangle. In the case  of loose formations, this is 
reasonable. The polygon formation is not re- 
quired to be rigid and might flex  and change 
shape as the  orbits evolve.  Recall t h a t  on a 
sphere, two great circles  must  always intersect at  
the antipodes. This fact  forces two circular or- 

bits of the same radius to always intersect twice 
per orbit. For elliptical orbits,  the  intersection 
patterns might be more complex, but it is virtu- 
ally impossible to enforce a rigid polygon for- 
mation  without  propulsion and control. The 
cost of maintaining a rigid formation  for  long 
periods  is prohibitive using the brute-force ap- 
proach. The only viable ones are the string-of- 
pearls formation, where a series of satellites fol- 
low one  another  in  the same orbit.  Another 
formation  concept is to use heliocentric  orbits 
(such as the Earth’s orbit), where gravitation is 
much  more uniform. In this case, a rigid  forma- 
tion might be held together  for some time be- 
cause the  orbit changes so slowly. 

The second  exotic concept is a quasihalo  con- 
stellation (Figure 10) around  the L1 Lagrange 
point. LI is a point between the  sun and the 
Earth, roughly 1.5 million km away from Earth 
along the sun-Earth line (where  EartMsun grav- 
itation balances with the rotational force to pro- 
duce a relative  equilibrium). A particle  placed a t  
L1  will remain there forever,  if no perturbations 
are introduced. But L1 is unstable, and the re- 
gion around it  in the phase space  is chaotic. 
There are 3D quasihalo orbits around L1 that 
wind  around a torus6J These orbits provide the 
dynamics to control a constellation near L1 fly- 
ing  in formation. 

The design of such constellations requires an 
understanding of dynamical  systems  theory,  par- 
ticularly of invariant manifolds. A great deal  of 
work  is required to understand the dynamics  of 
these orbits and  how to control them. In partic- 
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ular, continuous thrusting is required for their 
control, perhaps  with  ion  engines. This requires 
an understanding of optimal control  theory in 
the  three-body problem-currently an active 
area  of  research  and  development. 

but are incomplete. The problem of multiple 
satellites has not been investigated. 

Although satellite constellations have been 
around for some time, the recent interest in  the 
satcom industry has  given the subject new life 
because so much is a t  stake.  But  despite the fact 
that this is a multibillion-dollar industry just 
waiting to take  off, the efforts expended in the 
area  of  mission  analysis  and  design are dispro- 
portionately small. Considering how much 
cheaper simulation and  analysis are compared 
with attempts to fix complex  system problems 
after launch, this is incomprehensible. 

This problem  is a result of the past  success of 
the satellite industry, where so much has been 
done with seemingly so little investment into 
mission design and trajectory analysis. The 
growth of technology has created much  more 
complex instruments and even more complex 
mission requirements unimagined in the 1950s. 
Despite the incredible advances  in computation 
hardware and software, a t  the end of the  20th 
century, we  have  reached a plateau  where the old 
trajectory technology no longer adequately 
serves modern mission requirements. New 
methods, new  paradigms such as  dynamical sys- 
tems theory, chaotic orbits, ergodic theory,  and 
so forth, will  provide  new  capabilities to respond 
to new  challenges. 9 
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